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Abstract

We propose a new upwinding embedded boundary method to solve time dependent Maxwell�s equations in media

with material interfaces. A global second order finite difference method is obtained by combining central difference

schemes away from the interfaces and upwinding technique with jump conditions near the interfaces. The proposed

finite difference method allows time step based on a uniform mesh independent of the locations and shapes of the

interfaces. Moreover, the scheme is simple to implement in multidimensional cases. Numerical tests of wave equations

with various types of material interfaces and electromagnetic scattering of 2D cylinders confirm the stability, uniform

accuracy and ease of implementation of the method.
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1. Introduction

Time domain solutions of Maxwell�s equations have found applications in engineering problems such as
the design of wide band antennas, study of cross talk and signal integrity in VLSI chip designs [1]. In

contrast to frequency domain approaches where time harmonic Maxwell�s equations are solved for given

frequencies [2], the solutions from time domain simulation can produce a wide range of frequency infor-

mation as well as transient phenomena required in many applications.

The most used time domain algorithm for Maxwell�s equations is the simple Yee�s finite difference scheme
[3], which yields a second order approximation to the fields provided the underlying grids are rectangles and
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the conductor or dielectric boundaries are aligning with the mesh coordinates. Thus, the major disadvantage

of the Yee�s scheme is the limitation of the boundary or material interface geometry. To have second order

accuracy, the scheme demands a locally conforming mesh to the boundary. As a result, tiny finite difference

cells will limit the time step of the overall scheme. There are some attempts to avoid this limitation on the

time step by using extrapolations and the staggered grids of the Yee�s scheme for E field and H field [4].

Recently, discontinuous Galerkin methods have attracted much research to handle the material inter-

faces in the media. Being higher order versions of traditional finite volume method [5], discontinuous

Galerkin methods have been developed initially in 1970s for the study of neutron transport equations [6],
and have now been applied to the area of computational fluid dynamics and the solution of Maxwell�s
equations [7,8]. Discontinuous Galerkin methods inherit the flexibility of the finite element method in al-

lowing unstructured meshes, and at the same time, employ high order polynomials for better accuracy and

phase error in modeling wave propagations.

However, to maintain the high order accuracy of discontinuous Galerkin methods, it is important to

generate a finite element type of mesh conforming to the interface geometry. The generation of such a mesh

consumes a majority of the computational cost and storage requirement. Therefore, in this paper, we

propose a new upwinding embedded boundary method which employs a simple Cartesian grid to solve time
dependent Maxwell�s equations. Cartesian grid based methods have been developed extensively for the

shock wave computations [9,10]. The proposed embedded boundary method, like the immersed interface

method (IIM) proposed to solve elliptic PDEs with discontinuous coefficients [11], uses a central difference

scheme for mesh points away from the interfaces while modifications are made for grid points near the

interfaces. The immersed interface method uses a central difference formula at all grid points, therefore, in

order to have the difference formula to the correct order of accuracy, jump conditions of the solutions and

their derivatives (by using the differential equations) are needed. In [12], the immersed interface method was

extended to hyperbolic equations.
In this paper, realizing that information of the solution of the hyperbolic equation is propagated by

characteristics and jump conditions across the material interfaces, we believe that it is natural to apply an

upwinding strategy to construct difference formulas near the material interfaces. This belief leads to the

basic idea of the proposed upwinding embedded boundary method (UEBM), which keeps the simplicity of

the Cartesian grid based methods, and provides uniformly accurate and stable numerical solution at a time

step allowed on the otherwise uniform mesh, independent of the interface location and geometry.

Various numerical tests presented in this paper show that the proposed upwinding embedded boundary

method is simple to code and implement, and produce uniformly second order accurate and stable results.
It can be extended with only minor modifications to 3D cases.

The rest of the paper is given as follows: in Section 2, we will demonstrate the idea of the UEBM with a

simple 1D scalar model equation. We will show how the solution is passed across the material interface by

characteristics and jump conditions, and how the maximum time step allowed on the uniform mesh is

achieved independent of the interface location. In Section 3, we extend the method to 1D system by local

characteristic decompositions near the interface. In Section 4, we extend the UEBM to 2D Maxwell�s
equations. In the 2D case, a key technical issue is how to construct one-sided difference formula for an

interface with cone property. In Section 5, a series of numerical tests are presented to demonstrate the
simplicity, global second order accuracy and stability of the proposed method. Finally, the stability analysis

of the proposed method for a 1D model wave equation is included in Appendix A.
2. 1D scalar model equation

In this section, we consider a simple linear wave equation to demonstrate the basic idea of the upwinding
embedded boundary method.
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Consider a scalar wave equation

ou
ot

þ a
ou
ox

¼ 0; 06 x6 1; ð2:1Þ

where the wave speed a is assumed to be positive and discontinuous at xd 2 ð0; 1Þ, i.e.,

a ¼ a� > 0; x < xd;
aþ > 0; x > xd;

�
and the solution uðx; tÞ satisfies a jump condition at xd as follows.

rþuðxþd ; �Þ � r�uðx�d ; �Þ ¼ g: ð2:2Þ

For a uniform grid fxi ¼ iDx; 06 i6N ;Dx ¼ 1=Ng, we have the numerical solutions uni at grid points

ðxi; tnÞ; i ¼ 0; 1; . . . ;N , and also the solutions at both sides of the jump location xd denoted as un�; u
n
þ (see

Fig. 1).

We will construct a uniformly second order finite difference method to solve (2.1) based on the Lax–

Wendroff approach

unþ1¼: un þ Dtunt þ
ðDtÞ2

2
untt ¼ un � aDtunx þ

ðaDtÞ2

2
unxx; ð2:3Þ

where Dt ¼ CFLðDx=jajÞ, and the spatial derivatives can be approximated by appropriate finite differences

such as

unx;i ¼ unx jx¼xi �
Xl
k¼�m

ckuniþk; ð2:4Þ
unxx;i ¼ unxxjx¼xi �
Xl
k¼�m

dkuniþk; ð2:5Þ

where the width of the stencil will be lþ mþ 1. For l ¼ m we have a central difference scheme, and

otherwise, a one-sided difference scheme which will be used in place near the domain boundaries and the

discontinuity xd:
Fig. 1. 1D mesh with discontinuity at xd.
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Let us assume that the solutions uni , 06 i6N , u
n
� and unþ have been obtained for the time step t ¼ tn. We

will show how to obtain the solutions at the time step t ¼ tnþ1: Also, let us assume that

xd 2 ½xj; xjþ1
;

and xd ¼ xj þ aDx, xjþ1 � xd ¼ bDx, where a þ b ¼ 1.

2.1. Solutions at the jump xd

As the solution of (2.1) represents a wave propagating from left to right, we can thus use the PDE (2.1)

to obtain unþ1� at the left side of xd; namely

unþ1� ¼ un� � a�Dtunx;� þ ða�DtÞ2

2
unxx;�; ð2:6Þ

where the derivatives unx;� and unxx;� can be approximated by one-sided difference formulas

unx;� ¼ unx jx¼x�
d
� 1

Dx
c0un� þ

Xm
k¼1

ckunj�k

 !
; ð2:7Þ
unxx;� ¼ unxxjx¼x�
d
� 1

ðDxÞ2
d0un� þ

Xm
k¼1

dkunj�k

 !
; ð2:8Þ

and the coefficients are selected to have second order accuracy. It should be brought to the attention that in

both difference formulas (2.7) and (2.8), the solution unj is not used. Instead, u
n
� is included so that small

mesh size and small time step Dt, due to the presence of the jump location xd, will not occur.
For second order accuracy, we set m ¼ 2. Then the coefficients in (2.7) and (2.8) are

c0 ¼
3þ 2a

ð1þ aÞð2þ aÞ ; d0 ¼
2

ð1þ aÞð2þ aÞ ;

c1 ¼
�ð2þ aÞ2

ð1þ aÞð2þ aÞ ; d1 ¼
�2ð2þ aÞ

ð1þ aÞð2þ aÞ ;

c2 ¼
ð1þ aÞ2

ð1þ aÞð2þ aÞ ; d2 ¼
2ð1þ aÞ

ð1þ aÞð2þ aÞ :

ð2:9Þ

To obtain the solution at the other side of the jump, we can simply use the jump condition (2.2) and have

unþ1þ ¼ 1

rþ
ðg þ r�unþ1� Þ: ð2:10Þ

2.2. Solutions unþ1j and unþ1jþ1

Solution unþ1j can be obtained by an upwinding finite difference (2.4) and (2.5) by setting l ¼ 0.

In order to obtain unþ1jþ1 ; we will use the solution u
nþ1
þ just obtained in (2.10), unþ; and u

n
jþ1þk; kP 1: By

examining the domain of influence of the hyperbolic equation, we can see that the characteristic originating

from the time-space location ðxd; tnÞ will pass the location ðxjþ1; tn þ CFLðbDx=jajÞÞ. Therefore, without the
knowledge of unþ1þ , we may only be able to time-march the solution at xjþ1 with a time step CFLðbDx=jajÞ,
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which could be very small if b approaches to zero. Also, we again intentionally do not use unjþ1 to avoid

small spatial mesh size. Specifically, we have the following schemes.

Approach I – upwinding.

unþ1jþ1 ¼ unjþ1 � aþDtunx;jþ1 þ
ðaþDtÞ2

2
unxx;jþ1; ð2:11Þ

where

unx;jþ1 ¼ unx jx¼xjþ1 �
1

Dx
c0unþ1þ þ c1unþ þ

Xm
k¼2

ckunjþk

 !
; ð2:12Þ
unxx;jþ1 ¼ unxxjx¼xjþ1 �
1

ðDxÞ2
d0unþ1þ þ d1unþ þ

Xm
k¼2

dkunjþk

 !
: ð2:13Þ

For second order accuracy, we set m ¼ 2, and we have

c0 ¼
1� b

ðc þ 1Þðb � cÞ ; d0 ¼
�2

ðc þ 1Þðb � cÞ ;

c1 ¼
c � 1

ðb þ 1Þðb � cÞ ; d1 ¼
2

ðb þ 1Þðb � cÞ ;

c2 ¼
b þ c

ðb þ 1Þðc þ 1Þ ; d2 ¼
2

ðb þ 1Þðc þ 1Þ ;

ð2:14Þ

where c ¼ b þ aþðDt=DxÞ.
Approach II – interpolation. Alternatively, we can simply use interpolation from the already computed

solutions at the neighboring points at the time step tnþ1 to approximate unþ1jþ1 ; namely

unþ1jþ1 ¼ e0unþ1þ þ
Xm
k¼2

ekunþ1jþk : ð2:15Þ

For second order accuracy, we can set m ¼ 3, and we have

e0 ¼
2

ðb þ 1Þðb þ 2Þ ; e2 ¼
2b

b þ 1
; e3 ¼

�b
b þ 2

: ð2:16Þ

Numerical experiments later will show that both approaches give accurate and stable results. However,

the interpolation approach is much simpler to implement, especially in multidimensional cases.
3. 1D systems

Let us consider the linear system of equations

ou

ot
þ A

ou

ox
¼ 0; ð3:1Þ

where

uðx; tÞ ¼
u1ðx; tÞ

..

.

unðx; tÞ

0B@
1CA:
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The matrix A has different formulas across the discontinuity xd representing a material interface

A ¼ A�; x < xd;
Aþ; x > xd:

�
The matrix A can be diagonalized as follows:

A ¼ PKP�1;

where

K ¼ diagðk1; . . . ; kp; . . . ; knÞ;
k1; . . . ; kp P 0; kpþ1; . . . ; kn < 0; ð3:2Þ

and p is assumed to be the same on both sides of the interface throughout the paper.

Solution uðx; tÞ may be discontinuous across the interface xd and its values on both sides of the interface

are related by the following jump condition.

Rþuþ � R�u� ¼ g; ð3:3Þ

which can be rewritten in terms of the characteristic variable w ¼ P�1u as

Qþwþ � Q�w� ¼ g; ð3:4Þ

where Qþ ¼ RþPþ and Q� ¼ R�P�:
The characteristic variables satisfy decoupled scalar wave equations

owi
ot

þ ki
owi
ox

¼ 0; 06 i6 n; ð3:5Þ

where the ki�s may have a jump discontinuity at xd:

3.1. Solutions at the jump xd

We will apply the same strategy as in Section 2 to the system of equations on the characteristic

variable w.

Let

w� ¼ w1
�

w2
�

� �
be the partition of w� according to the signs of the eigenvalues in (3.2). Similar to the case of single scalar

equation, we know that w1
� ¼ ðw1;�; . . . ;wp;�ÞT can be solved by an upwinding scheme for the differential

equation (3.5) as in (2.6). And, w2
þ ¼ ðwpþ1;þ; . . . ;wn;þ)T can also be obtained by an upwinding scheme from

(3.5).

Next, we will apply the jump conditions in characteristic variables to obtain the rest components of the
characteristic variables on both sides of xd:

We first partition the matrices Qþ and Q� as

Q� ¼ Q�
11 Q�

12

Q�
21 Q�

22


 �
: ð3:6Þ
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Then from the jump condition (3.4), we can obtain
w1

þ
w2

�

� �
from the following system of equations

Qþ
11 �Q�

12

Qþ
21 �Q�

22


 �
w1

þ
w2

�

� �
¼ egg; ð3:7Þ

where

egg ¼ g� �Q�
11 Qþ

12

�Q�
21 Qþ

22


 �
w1

�
w2

þ

� �
:

The coefficient matrix above is invertible for well-posed hyperbolic systems.

Finally, we have the solution at xd

u� ¼ P�w�: ð3:8Þ

3.2. Solutions unþ1j and unþ1jþ1

We can obtain the solutions at xj and xjþ1 in the same way as in the case of one scalar equation by

working with the decoupled scalar wave equations (3.5) for the characteristic variables. Again, two ap-

proaches can be used, one by solving the partial differential equation with an upwinding algorithm as in

(2.11), and one by using interpolation as in (2.15). In both cases, we have to use the solution at the interface

xd at the time step tnþ1 obtained in (3.8).
4. 2D Maxwell’s equations

Let us consider 2D Maxwell�s equations for a z-transverse magnetic (TM) wave [13], where the magnetic

field H is transverse to the z-direction and the electric field E has only one component along the z-direction,
i.e.,

H ¼ ðHxðx; yÞ;Hyðx; yÞ; 0ÞT; E ¼ ð0; 0;Ezðx; yÞÞT:

In this case, for a bounded region X ¼ ½0; 1
2 in the x–y plane, the Maxwell�s equations are reduced to the
following 2D system of equations

ou

ot
þ A

ou

ox
þ B

ou

oy
¼ 0; ðx; yÞ 2 X ¼ ½0; 1
2; ð4:1Þ

with

u ¼
Bx
By
Dz

24 35;
where B is the magnetic flux density and D is the electric flux density

B ¼ lH;

D ¼ �E:
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Here l is the magnetic permeability and � is the electric permittivity. And

A ¼
0 0 0

0 0 � 1
�

0 � 1
l 0

24 35; B ¼
0 0 1

�

0 0 0
1
l 0 0

24 35:
Across a material interface C with a normal n ¼ ðnx; nyÞT between two dielectric materials X� and

XþðX ¼ X� [ XþÞ, we have the boundary conditions for the electric and magnetic fields

½n � �E
 ¼ 0; ½n � lH
 ¼ 0;
½n� E
 ¼ 0; ½n�H
 ¼ 0;

which can be written in the form of (3.3) with

R� ¼
� ny

l�

nx
l�

0

nx ny 0

0 0 1
��

24 35:
A uniform Cartesian grid ðxi; yjÞ ¼ ðiDx; jDyÞ; 06 i6N ; 06 j6M , Dx ¼ 1=N ; Dy ¼ 1=M , will be used

to find the solutions uni;j at grid points and und;� at the interface points xd 2 C (Fig. 2). xd may be selected to
the intersection points of the interface C and the Cartesian grid coordinate lines.

A grid point ðxi; yjÞ will be labelled as a regular grid point if all nine points in the nine point stencil lie on
the same side of the interface. Otherwise it is labelled as an irregular grid point. For regular grid points, we

can apply the central Lax–Wendroff scheme. For irregular grid points and the interface points xd 2 C, we
will use the method proposed in Sections 2 and 3 by projecting the system (4.1) along the normal direction.

Namely, we consider the reformulated linear system

ou

ot
þ An

ou

on
þ Bs

ou

os
¼ 0; ð4:2Þ

where s ¼ ð�ny ; nxÞT ,

An ¼ ðA;BÞ � n; Bs ¼ ðA;BÞ � s; ð4:3Þ
Fig. 2. 2D mesh with material interface C.
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and

o

on
¼ n � r;

o

os
¼ s � r:

The three eigenvalues of An are

k1 ¼ 0; k2 ¼ c; k3 ¼ �c; ð4:4Þ

where c ¼ 1=
ffiffiffiffiffi
�l

p
is the speed of light in the media. The matrix P�1

n formed by the left row eigenvectors l1, l2,
l3 will diagonalize matrix An

An ¼ Pn
0

c
�c

24 35P�1
n ;

where

P�1
n ¼

l1
l2
l3

24 35 ¼
nx ny 0
nyffiffi
2

p � nxffiffi
2

p Zffiffi
2

p

� nyffiffi
2

p nxffiffi
2

p Zffiffi
2

p

24 35; ð4:5Þ

and Z ¼
ffiffiffiffiffiffiffi
l=�

p
is the intrinsic impedance. Similarly, Pn can be obtained by the right column eigenvectors r1,

r2, r3

Pn ¼ ½r1; r2; r3
 ¼
nx

nyffiffi
2

p � nyffiffi
2

p

ny � nxffiffi
2

p nxffiffi
2

p

0 Yffiffi
2

p Yffiffi
2

p

264
375; ð4:6Þ

where Y ¼ 1=Z is the admittance.

The second order finite difference method to solve (4.1) is based on the following time Taylor

expansion

unþ1¼: un þ Dtunt þ
ðDtÞ2

2
untt ¼ un � DtðAunx þ BunyÞ þ

ðDtÞ2

2
ðA2unxx þ ðABþ BAÞunxy þ B2unyyÞ: ð4:7Þ

4.1. Solutions at the interface points xd

Let nd ¼ ðnx; nyÞT be the normal of the interface at xd; and ðxi; yjÞ be the closest irregular grid point in the
region X� to xd as indicated in Fig. 2. We will discretize the partial derivatives in (4.7) by one-sided dif-

ference using only grid values in the region X�:

4.1.1. One-sided difference for almost flat interfaces C
When an interface C is flat or there are enough grid points along x and y coordinate lines to form regular

one-sided difference, the approximation of partial derivatives in (4.7) will be straightforward extension of

(2.4) and (2.5).

As xd is on one of the Cartesian grid lines, for illustration, let xd ¼ ðxiþa; yjÞ, where xiþa ¼ ðiþ aÞDx,
06 a < 1; may not be on the grid line, then the following one-sided difference formula can be used to

discretize the derivatives in (4.7)

unx jxd �
Xm
k¼0

ckuni�k;j; ð4:8Þ
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unxxjxd �
Xm
k¼0

dkuni�k;j; ð4:9Þ

while

uny jxd �
Xm
k¼0

c0ku
n
iþa;jþk; ð4:10Þ
unyy jxd �
Xm
k¼0

d 0ku
n
iþa;jþk; ð4:11Þ

where the solution uniþa;jþk at the location ðxiþa; yjþkÞ can be approximated from values at the nearby grid

points, in most cases when possible, by a simple average. The mixed derivative unxy will be handled by two

consecutive one-sided difference approximations of x- and y-derivatives.
4.1.2. One-sided difference for interfaces C with cone property

For most curved interfaces, the simple one-sided difference may not be applicable as there may not be

enough grid points along either of the coordinate lines. For those cases, we propose to use the following

least square method, using available grid solutions near the interface points or irregular points, to define the

approximation to the partial derivatives. Data fitting by least square has been successfully used in the
superconvergence recovery of finite element methods [14]. In order to apply the least square approach, we

will limit the interfaces to curves with the so-called cone property. Namely, for each xd 2 C; there is a cone
with its vertex at xd (see Fig. 2)

Cdðr; h1; h2Þ ¼ fx ¼ xd þ tðcos h; sin hÞ; 06 t6 r; h1 6 h6 h2g; ð4:12Þ

such that

Cdðr; h1; h2Þ � X�; or Xþ: ð4:13Þ

We require that (4.12) and (4.13) hold for both X� and Xþ.

If there are m grid points fxl ¼ ðxl; ylÞ; 16 l6mg � Cdðr; h1; h2Þ; we will be able to fit a kth order

polynomial pkðx; yÞ 2 Pk ¼ spanfxiyj; 06 iþ j6 kg (assuming that m > ðk þ 1Þðk þ 2Þ=2, in most cases, we

only need to have k ¼ 2) to each component ul, 16 l6 n, of the solution vector u by

pkðx; yÞ ¼ PTa;

where PT ¼ ð1; x; y; x2; . . . ; xk; xk�1y; . . . ; ykÞ; x ¼ x� xd; y ¼ y � yd: And the coefficient vector a can be

obtained by a least square procedure which is solved with the following normal equation

CTCa ¼ CTb;

where b ¼ ðulðx1Þ; ulðx2Þ; . . . ; ulðxmÞÞT; and

C ¼

1 x1 y1 � � � yk1
1 x2 y2 � � � yk2
1 x3 y3 � � � yk3
..
. ..

. ..
.

� � � ..
.

1 xm ym � � � ykm

2666664

3777775:
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Then, the derivatives of ulðxÞ can be approximated by

rsulðxÞ ¼ rspkðxÞ; s ¼ 1; 2: ð4:14Þ

Now, with (4.7)–(4.11) and (4.14), we can obtain the solution unþ1d;� . However, we will only use the

characteristic components which are outflow components along the normal direction nd. We project the

solution u along the eigen-direction of An in (4.3),

w� ¼
w1;�
w2;�
w3;�

0@ 1A ¼ ðP�
n Þ

�1
unþ1d;� ;

and according to the signs of the eigenvalues in (4.4), we decompose w� as

w� ¼ w1
�

w2
�

� �
; w1

� ¼ w1;�
w2;�

� �
; w2

� ¼ w3;�ð Þ;

and then based on the upwinding principle, we retain the value of w1
� at tnþ1:

Similarly, we can apply the same procedure in the region Xþ to get the value for w2
þ based on the

characteristic projection using wþ ¼ ðPþ
n Þ

�1
unþ1d;þ :

The rest of characteristic components in w� and wþ can be solved similarly as in (3.7).

4.2. Solutions at the irregular grid points P

Let P ¼ ðxi; yjÞ be an irregular grid point on the Cartesian grid (Fig. 2), xp be the projection of P onto the

interface C in terms of the shortest distance, and np ¼ ðnx; nyÞT. We will apply the method in Section 3 based

on the characteristic decomposition of matrix An ¼ ðA;BÞ � np: Again, one-sided difference formulas in (4.8)–

(4.11) and (4.14) will be used to approximate the x- and y-derivatives (thus the normal derivative) and the

details are omitted here.
5. Numerical results

In this section, several PDEs with available exact solutions are approximated. As our focus is on the

capability of the proposed method to handle various types of material interfaces, we will provide the

boundary values obtained by the exact solutions. In practical simulations when boundary values are not

available, absorbing boundary conditions such as PML boundary condition [15] or Lorentz material model

absorber layers [16,17] should be used.

5.1. Linear 1D wave system

In this test, we consider the 1D system (3.1) with

A� ¼ 0 1

1 0


 �
; Aþ ¼ 0 3

3 0


 �
:

The exact solution to this system is

In 06 x < xd:

u1ðx; tÞ ¼ 1ðsinðkðxþ tÞÞ þ sinðkðx� tÞÞÞ;

2

u2ðx; tÞ ¼ �1ðsinðkðxþ tÞÞ � sinðkðx� tÞÞÞ:

2
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In xd < x6 1:

u1ðx; tÞ ¼ 1
2
ðsinðkðxþ 3tÞÞ þ sinðkðx� 3tÞÞÞ;
u2ðx; tÞ ¼ �1
2
ðsinðkðxþ 3tÞÞ � sinðkðx� 3tÞÞÞ:

The jump condition (3.3) is obtained by the values given by the exact solution at xd. We set k ¼ 8p in our

tests. The time step is taken as

Dt ¼ CFL
Dx

jkmaxj
;

where jkmaxj ¼ maxA�;AþfjkA� j; jkAþ jg. In our tests, CFL ¼ 0:8.
We will test three cases, xd ¼ 0:5þ Dx=108; xd ¼ 0:5þ Dx=2 and xd ¼ 0:5� Dx=108. The numerical re-

sults demonstrate the stability of the UEBM with the same time step independent of the interface locations.

Tables 1 and 2 show the results of grid refinement analysis for the upwinding approach (2.11) and the

interpolation approach (2.15), respectively. The results confirm the global second order accuracy of both

approaches. However, as Approach II is simpler to implement in 2D and 3D situations, we will use it for

the numerical tests in all 2D cases later. Fig. 3 shows the computed and the exact solutions at the time t ¼ p
with xd ¼ 0:5þ Dx=108 and N ¼ 200 using the upwinding approach.

To compare the UEBM with the immersed interface method (IIM) for hyperbolic equations [12], we

apply the IIM to solve the same 1D wave system. Table 3 shows the results of grid refinement analysis. It

can be observed that both methods are second order accurate, and they seem to have consistent accuracy

because both use the second order Lax–Wendroff scheme for regular Cartesian grid points.

Both methods can capture jump conditions across material interfaces using Cartesian grid, but the

UEBM needs to track the solutions at the interfaces as well. The UEBM also needs local characteristic

decompositions near the interfaces. On the other hand, in the IIM method, in order to have the difference
Table 1

The grid refinement analysis for 1D wave system – upwinding approach

N xd ¼ 0:5þ Dx=108 xd ¼ 0:5þ Dx=2 xd ¼ 0:5� Dx=108

kENk1 Order kENk1 Order kENk1 Order

100 1:018� 10�1 8:994� 10�2 8:492� 10�2

200 2:522� 10�2 2.0130 2:270� 10�2 1.9863 2:182� 10�2 1.9604

400 6:436� 10�3 1.9700 5:706� 10�3 1.9921 5:580� 10�3 1.9675

800 1:638� 10�3 1.9739 1:428� 10�3 1.9982 1:402� 10�3 1.9932

1600 4:117� 10�4 1.9923 3:573� 10�4 1.9988 3:521� 10�4 1.9934

Table 2

The grid refinement analysis for 1D wave system – interpolation approach

N xd ¼ 0:5þ Dx=108 xd ¼ 0:5þ Dx=2 xd ¼ 0:5� Dx=108

kENk1 Order kENk1 Order kENk1 Order

100 9:040� 10�2 8:566� 10�2 9:551� 10�2

200 2:806� 10�2 1.6881 2:953� 10�2 1.5363 3:013� 10�2 1.6642

400 6:408� 10�3 2.1303 6:635� 10�3 2.1542 6:643� 10�3 2.1816

800 1:548� 10�3 2.0495 1:577� 10�3 2.0732 1:575� 10�3 2.0766

1600 3:797� 10�4 2.0275 3:839� 10�4 2.0384 3:770� 10�4 2.0627



Table 3

The grid refinement analysis for 1D wave system – immersed interface method

N xd ¼ 0:5þ Dx=108 xd ¼ 0:5þ Dx=2 xd ¼ 0:5� Dx=108

kENk1 Order kENk1 Order kENk1 Order

100 8:376� 10�2 8:375� 10�2 8:367� 10�2

200 2:108� 10�2 1.9904 2:108� 10�2 1.9902 2:108� 10�2 1.9888

400 5:279� 10�3 1.9975 5:279� 10�3 1.9975 5:279� 10�3 1.9984

800 1:320� 10�3 1.9997 1:320� 10�3 1.9997 1:320� 10�3 1.9997

1600 3:304� 10�4 1.9983 3:304� 10�4 1.9983 3:304� 10�4 1.9983

Fig. 3. The computed and the exact solutions for 1D wave system using the upwinding approach (xd ¼ 0:5þ Dx=108;N ¼ 200):

(a) u1ðx;pÞ; (b) u2ðx; pÞ.
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formula to the correct order of accuracy, jump conditions of not only the solutions but also their derivatives

are needed. Because the derived jump conditions at the interface depend on the differential equations

themselves, the derivation of the jump conditions may be very complicated.

5.2. Comparison between the Yee’s scheme and the UEBM: plane wave normally incident on a planar

boundary

To compare the behaviors of the standard Yee�s scheme and the UEBM, we consider the following 1D

Maxwell�s equations

�
oE
ot

¼ oH
oz

;

l
oH
ot

¼ oE
oz

;

where Eðz; tÞ and Hðz; tÞ signify the mutually perpendicular tangential electric and magnetic field compo-

nents ðEy ;HxÞ.
We first solve the above 1D Maxwell�s equations in a homogeneous medium with � ¼ 2 and l ¼ 2. Table

4 shows the results of grid refinement analysis for both the Yee�s scheme and the UEBM. It is clear that in a

homogeneous medium, both methods are second order accurate, and there are no essential differences in

accuracy.



Table 4

Comparison between the Yee�s scheme and the UEBM for 1D Maxwell�s equations – homogeneous medium (� ¼ l ¼ 2)

N Yee�s scheme UEBM

kENk1 Order kENk1 Order

100 1:711� 10�2 1:621� 10�2

200 4:279� 10�3 1.9995 3:982� 10�3 2.0253

400 1:070� 10�3 1.9997 9:884� 10�4 2.0103

800 2:675� 10�4 2.0000 2:463� 10�4 2.0047

1600 6:688� 10�5 1.9999 6:149� 10�5 2.0020
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We then take the simple example of a plane wave normally incident on a planar boundary (z ¼ 0) [18].

On the left of the boundary ð�0:56 z6 0Þ, the medium is vacuum (�1 ¼ l1 ¼ 1), but the medium on the

right ð06 z6 0:5Þ is a dielectric with �2 ¼ 2 and l2 ¼ 2. When the incident wave encounters the interface, a

reflective wave and a transmitted wave will be generated. To solve the wave propagation problem, the

above 1D Maxwell�s equations are used. In our test, the incident plane wave takes the form

Einc ¼ eiðxtþk1zÞ; Hinc ¼
1

Z1
eiðxtþk1zÞ:

Then the problem has an exact solution given as follows

Eðz; tÞ ¼
eiðxtþk1zÞ þ Z2�Z1

Z2þZ1
eiðxt�k1zÞ; z < 0;

2Z2
Z2þZ1

eiðxtþk2zÞ; z > 0;

8<:

Hðz; tÞ ¼

1
Z1
eiðxtþk1zÞ � Z2�Z1

Z1ðZ2þZ1Þ
eiðxt�k1zÞ; z < 0;

2
Z2þZ1

eiðxtþk2zÞ; z > 0;

8<:
where k1 ¼ x

ffiffiffiffiffiffiffiffiffi
�1l1

p
and k2 ¼ x

ffiffiffiffiffiffiffiffiffi
�2l2

p
are the propagation constants, and Z1 ¼

ffiffiffiffiffiffiffiffiffiffiffi
l1=�1

p
and Z2 ¼

ffiffiffiffiffiffiffiffiffiffiffi
l2=�2

p
are

the impedances of the media.

Table 5 shows the results of grid refinement analysis for both the Yee�s scheme and the UEBM. The

results clearly show that the global accuracy of the UEBM remains second order, but that of the Yee�s
scheme is reduced to first order because it cannot model the material interface correctly. And for this
example, for a realistic accuracy around 1%, the UEBM ends up superior.
Table 5

Comparison between the Yee�s scheme and the UEBM for 1D Maxwell�s equations – inhomogeneous media (�1 ¼ l1 ¼ 1 and

�2 ¼ l2 ¼ 2)

N Yee�s scheme UEBM

kENk1 Order kENk1 Order

100 5:759� 10�2 1:417� 10�2

200 2:214� 10�2 1.3792 3:558� 10�3 1.9937

400 9:445� 10�3 1.2290 8:922� 10�4 1.9956

800 4:327� 10�3 1.1262 2:234� 10�4 1.9977

1600 2:064� 10�3 1.0679 5:591� 10�5 1.9985
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5.3. Linear 2D wave system

In this test, we will verify the second order accuracy of the UEBM for the linear 2D wave equations for

various types of material interfaces. We shall consider a 2D wave system (4.1) for two unknowns with the

following coefficient matrices A and B.
In X�:

A� ¼ 2 �1
�1 2


 �
; B� ¼ 2 0

0 1


 �
:

In Xþ :

Aþ ¼ 4 �2
�2 4


 �
; Bþ ¼ 4 0

0 2


 �
:

The exact solution to this system is

In X� :

u1ðx; y; tÞ ¼ sinðkðx� tÞÞ þ sinðkðy � 2tÞÞ;
u2ðx; y; tÞ ¼ sinðkðx� tÞÞ þ sinðkðy � tÞÞ:

In Xþ :

u1ðx; y; tÞ ¼ sinðkðx� 2tÞÞ þ cosðkðy � 4tÞÞ;
u2ðx; y; tÞ ¼ sinðkðx� 2tÞÞ þ cosðkðy � 2tÞÞ:

The jump condition (3.3) is obtained by the values given by the exact solution at a given interface C. In
our test k ¼ 4p unless otherwise specified, and Dx ¼ Dy ¼ h. The time step is chosen as

Dt ¼ CFL
h

2
ffiffiffi
2

p
jkmaxj

;

where jkmaxj ¼ maxA�;B�fjkA� j; jkAþ j; jkB� j; jkBþ jg. In our test, we set CFL ¼ 0:8, independent of the locations
and shapes of the interfaces.

Case 1. C is a line with 45� inclination with respect to the x-axis. In Table 6, we list the error and

convergence rate for three situations with different distances hC between the interface C and the mesh

points. hC ¼ 10�8Dxmeans that C is close to the grid points from above. hC ¼ Dx=1:000000001 means that C
is close to the grid points from below. Again, uniformly second order convergence is observed in all three

situations. Fig. 4 shows the contour of the computed solution of u1ðx; y; t ¼ 1Þ for the situation

hC ¼ Dx=1:000000001, and Fig. 5 shows slices of the computed and the exact solutions of u1ðx; y; t ¼ 1Þ at
y ¼ 0:5:
Case 2. In this case, we let the inclination of the interface C with respect to the x-axis to be 1� or 89�,

which corresponds to the situation where the interface is almost aligned with a coordinate line. In Table 7,

again, uniformly second order convergence is observed.

Case 3. We consider the interface C to be the circle x2 þ y2 ¼ r2 with r ¼ 0:6, and the solution

domain to be X ¼ ½�1; 1
2: We set k ¼ 2p in this case. Fig. 6 shows the contour of the computed

solution of u1ðx; y; t ¼ 1:5Þ, and Fig. 7 shows slices of the computed and the exact solutions of

u1ðx; y; t ¼ 1:5Þ at y ¼ 0. Table 8 shows the second order convergence of the maximum error for four
different meshes.



Table 6

The grid refinement analysis for 2D wave system – line with 45� inclination

N �M hC ¼ Dx=108 hC ¼ Dx=2 hC ¼ Dx=1:000000001

kENk1 Order kENk1 Order kENk1 Order

50� 50 3:519� 10�1 3:396� 10�1 3:407� 10�1

100� 100 8:319� 10�2 2.0807 7:879� 10�2 2.1078 7:703� 10�2 2.1450

200� 200 2:032� 10�2 2.0331 2:097� 10�2 1.9097 2:112� 10�2 1.8664

400� 400 5:274� 10�3 1.9464 5:388� 10�3 1.9605 5:439� 10�3 1.9576

Fig. 4. Contour of the computed solution of u1ðx; y; t ¼ 1Þ for 2D wave system – line with 45� inclination (hC ¼ Dx=1:000000001 and
100� 100 mesh).

Fig. 5. Slices of the computed and the exact solutions of u1ðx; y; t ¼ 1Þ at y ¼ 0:5 for 2D wave system – line with 45� inclination
(hC ¼ Dx=1:000000001 and 100� 100 mesh).
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Table 7

The grid refinement analysis for 2D wave system – line with 1� or 89� inclination

N �M Inclination ¼ 1� Inclination ¼ 89�

kENk1 Order kENk1 Order

50� 50 3:231� 10�1 2:488� 10�1

100� 100 8:939� 10�2 1.8537 6:366� 10�2 1.9662

200� 200 2:299� 10�2 1.9593 1:571� 10�2 2.0187

400� 400 5:911� 10�3 1.9594 3:942� 10�3 1.9949

Fig. 6. Contour of the computed solution of u1ðx; y; t ¼ 1:5Þ for 2D wave system – circle with radius of 0.6 (100� 100 mesh).

Fig. 7. Slices of the computed and the exact solutions of u1ðx; y; t ¼ 1:5Þ at y ¼ 0 for 2D wave system – circle with radius of 0.6

(100� 100 mesh).
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Table 8

The grid refinement analysis for 2D wave system – circle with radius of 0.6

N �M kENk1 Order

50� 50 3:594� 10�1

100� 100 7:458� 10�2 2.2688

200� 200 1:328� 10�2 2.4891

400� 400 3:120� 10�3 2.0901
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5.4. Scattering of a dielectric cylinder

In this test, we shall focus the attention on solving the following 2D TM form Maxwell�s equations for
ðHx;Hy ;EzÞ

olHx

ot
¼ � oEz

oy
;

olHy

ot
¼ oEz

ox
;

o�Ez

ot
¼ oHy

ox
� oHx

oy
:

The field components, ðHx
k ;H

y
k ;E

z
kÞ, are subject to boundary conditions between two regions, with material

parameters �k and lk, for k ¼ 1; 2, as

n�H1 ¼ n�H2;
n � l1H1 ¼ n � l2H2;
Ez1 ¼ Ez2:

Here, Hk ¼ ðHx
k ;H

y
k ; 0Þ

T
, and n ¼ ðnx; ny ; 0ÞT represents a unit normal to the material interface.

We shall consider a typical electromagnetic scattering problem, i.e., scattering by a dielectric cylinder in

free space with a TM wave excitation. An illustration is shown in Fig. 8. The cylinder is assumed to have a

radius of r0.
Fig. 8. Scattering of a 2D dielectric cylinder.
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If we assume that the cylinder is illuminated by a time-harmonic incident plane unit wavelength wave of

the form

Ezinc ¼ e�iðk1x�xtÞ; Hy
inc ¼ �e�iðk1x�xtÞ;

where the propagation constant for homogeneous, isotropic free-space medium is k1 ¼ x
ffiffiffiffiffiffiffiffiffi
l1�1

p
, then the

problem has an exact solution [19] given as follows

Ezðx; y; tÞ ¼ Ezðr; h; tÞ ¼ eixt

P1
n¼�1 C

tot
n Jnðk2rÞeinh; r6 r0;P1

n¼�1ði
�nJnðk1rÞ þ Cscat

n H ð2Þ
n ðk1rÞÞeinh; r > r0;

(

where ðr; hÞ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; arctanðy=xÞÞ represent the usual polar coordinates, Jn and H ð2Þ

n represent the nth
order Bessel function of the first kind and the Hankel function of the second kind, respectively, and
k2 ¼ x

ffiffiffiffiffiffiffiffiffi
l2�2

p
is the propagation constant for homogeneous, lossless dielectric medium.

The expansion coefficients for the total field interior to the cylinder are given as

Ctot
n ¼ i�n

ðk1=l1ÞJ
0
nðk1r0ÞH ð2Þ

n ðk1r0Þ � ðk1=l1ÞH ð2Þ
0

n ðk1r0ÞJnðk1r0Þ
ðk2=l2ÞJ 0

nðk2r0ÞH
ð2Þ
n ðk1r0Þ � ðk1=l1ÞH

ð2Þ0
n ðk1r0ÞJnðk2r0Þ

;

and

Cscat
n ¼ i�n

ðk1=l1ÞJ
0
nðk1r0ÞJnðk2r0Þ � ðk2=l2ÞJ

0
nðk2r0ÞJnðk1r0Þ

ðk2=l2ÞJ 0
nðk2r0ÞH

ð2Þ
n ðk1r0Þ � ðk1=l1ÞH

ð2Þ0
n ðk1r0ÞJnðk2r0Þ

:

Use Maxwell�s equations, one can obtain the solutions for the magnetic field components. Actually the

angular component of the total magnetic field is given as

H hðr; h; tÞ ¼ �eixt
�ik2
xl2

P1
n¼�1 C

tot
n J

0
nðk2rÞeinh; r6 r0;

�ik1
xl1

P1
n¼�1ði�nJ 0

nðk1rÞ þ Cscat
n H ð2Þ

0

n ðk1rÞÞeinh; r > r0;

8<:
and the radial component is given by

Hrðr; h; tÞ ¼ �eixt
i

xl2r

P1
n¼�1 inCtot

n Jnðk2rÞeinh; r6 r0;
i

xl1r

P1
n¼�1 inði�nJnðk1rÞ þ Cscat

n H ð2Þ
n ðk1rÞÞeinh; r > r0:

(

We consider a situation in which l1 ¼ �1 ¼ 1, i.e., the material exterior to the cylinder is assumed to be
vacuum. We consider two types of cylinders. In the first case, we set l2 ¼ 1, i.e., the material is non-

magnetics. In this special case, all three field components are continuous across the material interface. The

derivative of Ez is also continuous across the interface, but derivatives of Hx and Hy are discontinuous. In

the second case, we set l2 ¼ 2. In this case, Ez is continuous across the interface, but Hx, Hy and derivatives

of Hx, Hy , and Ez are all discontinuous.
In the numerical tests, we set the permittivity of the cylinder �2 ¼ 2:25, the radius of the cylinder r0 ¼ 0:6

and the angular frequency x ¼ 2p. The computational domain is set as ½�1; 1
2, and in all computations, we
let Dx ¼ Dy ¼ h. The time step used in the computations is

Dt ¼ CFL
h

2
ffiffiffi
2

p
kmax

;

where kmax ¼ maxfc1; c2g and ck ¼ 1=
ffiffiffiffiffiffiffiffiffi
�klk

p
, for k ¼ 1; 2. kmax equals to 1 and CFL is set as 0.5 in our test.



Fig. 9. Scattering of a 2D dielectric cylinder with material parameters l1 ¼ l2 ¼ �1 ¼ 1 and �2 ¼ 2:25. On the left are contours of the

computed solutions, and on the right are slices of the computed and the exact solutions. (a) Hxðx; y; t ¼ 1:0Þ; (b) Hxð0; y; t ¼ 1:0Þ; (c)
Hyðx; y; t ¼ 1:0Þ; (d) Hyðx; 0; t ¼ 1:0Þ; (e) Ezðx; y; t ¼ 1:0Þ; and (f) Ezðx; 0; t ¼ 1:0Þ. The mesh size is 100� 100.
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Fig. 10. Scattering of a 2D dielectric cylinder with material parameters l1 ¼ �1 ¼ 1;l2 ¼ 2 and �2 ¼ 2:25. On the left are contours of

the computed solutions, and on the right are slices of the computed and the exact solutions. (a) Hxðx; y; t ¼ 1:0Þ; (b) Hxðx; 0:2; t ¼ 1:0Þ;
(c) Hyðx; y; t ¼ 1:0Þ; (d) Hyðx; 0:2; t ¼ 1:0Þ; (e) Ezðx; y; t ¼ 1:0Þ; and (f) Ezðx; 0:2; t ¼ 1:0Þ. The mesh size is 100� 100.
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Fig. 11. Scattering of a 2D dielectric cylinder with material parameters l1 ¼ l2 ¼ �1 ¼ 1 and �2 ¼ 2:25. The plots are the computed

and the exact time history of Hx, Hy and Ez at the point (0.5, 0.5). The mesh size is 100� 100.
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Figs. 9 and 10 show the contours and slices of the three computed field components at the time t ¼ 1:0
for the first case (l2 ¼ 1) and the second case (l2 ¼ 2), respectively. Fig. 11 shows the time history of three
field components at a fixed point ð0:5; 0:5Þ for the first case. Table 9 shows the grid refinement results for

both cases, which again confirms the global second order accuracy.
Table 9

The grid refinement analysis for scattering of a 2D dielectric cylinder (�1 ¼ 1; �2 ¼ 2:25; l1 ¼ 1; l2 ¼ 1 or l2 ¼ 2Þ

N �M l2 ¼ 1 l2 ¼ 2

kENk1 Order kENk1 Order

50� 50 3:598� 10�1 6:988� 10�1

100� 100 7:059� 10�2 2.3498 1:648� 10�1 2.0840

200� 200 1:696� 10�2 2.0569 3:454� 10�2 2.2544

400� 400 4:179� 10�3 2.0212 7:933� 10�3 2.1225

Table 10

Comparison between the Yee�s scheme and the UEBM for 2D Maxwell�s equations – homogeneous medium (� ¼ 2:25 and l ¼ 2)

N �M Yee�s scheme UEBM

kENk1 Order kENk1 Order

50� 50 1:113� 10�1 3:292� 10�1

100� 100 2:908� 10�2 1.9364 8:905� 10�2 1.8863

200� 200 7:258� 10�3 2.0024 2:300� 10�2 1.9530

400� 400 1:827� 10�3 1.9901 5:872� 10�3 1.9697



Table 11

Comparison between the Yee�s scheme and the UEBM for 2D Maxwell�s equations – inhomogeneous media (�1 ¼ l1 ¼ l2 ¼ 1 and

�2 ¼ 2:25)

N �M Yee�s scheme UEBM

kENk1 Order kENk1 Order

50� 50 1:191� 10�1 3:598� 10�1

100� 100 6:182� 10�2 0.9460 7:059� 10�2 2.3498

200� 200 3:287� 10�2 0.9559 1:696� 10�2 2.0569

400� 400 1:698� 10�2 0.9529 4:179� 10�3 2.0212
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To compare the Yee�s scheme and the UEBM for 2DMaxwell�s equations, we first solve the equations in
a homogeneous medium with � ¼ 2:25 and l ¼ 2. The errors of both approaches are showed in Table 10.

We then consider the scattering of the above 2D dielectric cylinder with �1 ¼ l1 ¼ l2 ¼ 1 and �2 ¼ 2:25. As
shown in Table 11, the global accuracy of the Yee�s scheme is reduced to first order because it cannot model
the interface correctly. And again, for an accuracy around 1%, the UEBM ends up superior.
6. Conclusion

The proposed upwinding embedded boundarymethod (UEBM) retains the simplicity of the Cartesian grid

based method while providing uniform accuracy across material interfaces at a time step allowed on the
uniform Cartesian mesh. Extensive numerical tests confirm the stability, global second order accuracy and

ease of implementation of the method. Compared with the Yee�s scheme based on the staggered grid, the

method proposed hasmore unknowns as the later only has tangential components defined on a staggered grid.

However, the method proposed here can be easily extended to 3D, which will be the subject of future work.
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Appendix A. GKS stability analysis of (2.11) and (2.15)

The schemes (2.3) and (2.6) consist of two distinct one-sided difference formulae – one at xj < xd and the
other at the outflow boundary xd (based on a nonuniform grid) for x6 xd. The GKS theory [20,21] was not

applicable to the combined schemes (2.3) and (2.6) for x6 xd.
In the following, we will analyze the stability of the scheme in (2.11) or (2.15) using the GKS theory for

the model wave equation (2.1) with a > 0 and xd 6 x < 1. Let us assume that the discontinuity is located at

xd ¼ �bDx; 0 < b6 1; the solution unþ is provided through the jump condition (2.10), and the solution at

x0 ¼ 0 is given by either (2.11) or (2.15).

Approach I – upwinding.

unþ10 ¼ un0 � kðc0unþ1þ þ c1unþ þ c2un1Þ þ
k2

2
ðd0unþ1þ þ d1unþ þ d2un1Þ; ðA:1Þ



182 W. Cai, S. Deng / Journal of Computational Physics 190 (2003) 159–183
where ci; di; i ¼ 0; 1; 2 are given in (2.14), and k ¼ aDt=Dx. For GKS stability analysis, we consider a

homogeneous boundary condition at xd by setting unþ ¼ unþ1þ ¼ 0. Then we have

unþ10 ¼ un0 þ
k2

2
d2 � kc2

� �
un1: ðA:2Þ

Approach II – interpolation.

unþ10 ¼ e0unþ1þ þ e2unþ11 þ e3unþ12 ; ðA:3Þ

where e0; e2; e3 are given in (2.16). Again for GKS stability analysis, we can set unþ1þ ¼ 0. We have

unþ10 ¼ e2unþ11 þ e3unþ12 : ðA:4Þ

For jP 1; we have the regular Lax–Wendroff scheme

unþ1j ¼ kð1þ kÞ
2

unj�1 þ ð1� k2Þunj �
kð1� kÞ

2
unjþ1: ðA:5Þ

For GKS stability analysis, we need to show that the scheme (A.2) and (A.5), or (A.4) and (A.5) does not

have any nontrivial admissible solution of the following form

unj ¼ AðzÞznjj; jzjP 1; jjj6 1: ðA:6Þ

For the scheme (A.2) and (A.5), we have the following system

z ¼ 1þ k2

2
d2 � kc2

� �
j;

z ¼ kð1þkÞ
2

j�1 þ ð1� k2Þ � kð1�kÞ
2

j:

(
ðA:7Þ

Then it can be checked numerically that for 06 k < 1 and 0 < b6 1, the system (A.7) has no admissible

solutions which satisfy jzjP 1 and jjj6 1.

Similarly, for the scheme (A.4) and (A.5), we have

1� e2j � e3j2 ¼ 0;
z ¼ kð1þkÞ

2
j�1 þ ð1� k2Þ � kð1�kÞ

2
j:

�
ðA:8Þ

From the first equation, we can see that

j ¼ b þ 2

b þ 1
�

ffiffiffiffiffiffiffiffiffiffiffi
b þ 2

pffiffiffi
b

p
ðb þ 1Þ

ffiffiffiffiffiffiffi
�1

p
;

which is shown to be greater than 1 in magnitude for 0 < b6 1. Thus, the system (A.8) has no admissible

solutions either.

Together this proves the stability of (2.11) and (2.15).
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